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Abstract-The integral transform method is reviewed as a benchmark tool in computational heat and fluid 
flow, with special emphasis on nonlinear problems. The hybrid numerical-analytical nature of this approach 
collapses the numerical task into one single independent variable, and thus allows for a simple com- 
putational procedure with automatic global error control and mild increase in computational effort for 
multidimensjonal situations. Various applications on nonlinear diffusion and convection~iffusjon are 

more closely considered, followed by sample results from recent contributions. 

INTRODUCTION 

THE INTEGRAL transform method is well-known as a 
classical approach in the analytical solution of certain 
classes of linear transformable diffusion problems [ 1, 
21. The treatise by Mikhailov and iizisik [3] compiles 
most of the available work in the exact analysis of 
heat and mass diffusion, following the ideas of integral 
transformation. During the last two decades, after the 
work of ozisik and Murray 141, this approach was 
progressively extended to allow for the approximate 
analytical solution of a much wider range of a priori 
non-transformable problems, as reviewed in different 
sources [5-81. 

More recently, this approach gained a hybrid 
numerical-analytical structure, offering user con- 
trolled accuracy and quite efficient computational per- 
formance for a wide variety of problems, which are 
classified and systematically presented with several 
applications in ref. [5], in&ding the nonlinear for- 
mulations of interest in heat and fluid flow appli- 
cations. Among the various types of extensions dis- 
cussed in ref. [5], we can briefly point out problems 
with variable equation and boundary coefficients, 
moving boundary problems, irregular non-trans- 
formable geometries, difficult auxiliary eigenvalue- 
type problems, coupled problems, nonlinear diffusion 
and convection~iffusion problems, boundary layer 
formuIations and Navier-Stokes equations. 

Besides being an alternative computational method 
in itself, this revived approach is particularly well- 
suited for benchmarking purposes, in light of its auto- 
matic error control feature, retaining the same charac- 
ieristics of a purely analytical solution. In addition to 
the straightforward error control and estimation, an 
outstanding aspect of the method is the direct exten- 
sion to multidimensional situations, with a rather mild 
increase in computational effort with respect to one- 
dimensional applications. Again, the hybrid nature is 

responsible for this behavior, since the analytical part 
in the solution procedure is employed over all but one 
independent variable, and the numerical task is always 
reduced to the integration of an ordinary differential 
system in one single coordinate. 

The nonlinear formulations in heat and fluid flow 
that have been handled, can be divided, for illustration 
purposes, into five different classes, namely, diffusion 
type-problenls [9-17& convection-diffusion problems 
[17-201, eigenvalue problems [21], boundary layer 
equations [22-241, and Navier-Stokes equations 
[25-281. 

The present paper reviews specifically such non- 
linear problems of great practical interest, that have 
been tracted so far through the generalized integral 
transform technique and briefly indicates how the 
computational algorithm proceeds in this approach. 
A number of representative nonlinear examples are 
then examined more closely. 

FORMAL SOIJJTION 

As an example of the formal solution procedure, let 
us consider the following transient nonliner diffusion 
problem, defined within region V and boundary sur- 
face S, with nonlinear source functions at both equa- 
tion and boundary condition 

t?T(x, t) 
w(x) -a;-.- = v * K(x)VT(x, r) -d(x)T(x, t) 

+P(T(x,r)), in xeV, t >O (la) 

with boundary and initial conditions given respec- 
tively by 

XES, t>o (lb) 

T(x, 1) =.f(x), Xf v, t = 0. UC) 
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NOMENCLATURE 

d(x) coefficient of L operator, equation (2b) W(x) coefficient of L, operator, equation (2a) 
,f’(x) initial condition (Ic) X position vector. 

f transformed initial condition 

s, transformed source functions 
K(x) coefficient off. operator, equation (2b) Greek symbols 
n outward drawn normal vector x(x) coefficient of boundary condition. 
N order of truncated system equation (1 b) 

N, normalization integral P(x) coefficient of boundary condition, 
P( T(x, 1)) source function of equation (I a) equation (1 b) 
t lime or corresponding space coordinate 1; relative error estimator, equation (7) 
s region boundary surface P! eigenvalues of problem (3) 
T!(t) transformed potential qh(T(x> t)) source function in boundary 
T(x. f) potential condition (I b) 
V region volume $(p,, x) eigenfunctions of problem (3). 

Although the nonlinearities appear explicitly only 
in the source terms of both equation (la) and bound- 

ary condition (1 b), such a formulation includes more 

K(x) 

general ones, provided the linear operators 

L, = W(X)i[ (2a) 

L = -V* K(x)V+d(x) (2b) 

BE a(x)+p(x)K(x); (2c) 

are taken as characteristic ones extracted from the 
original nonlinear versions, and remaining nonlinear 

terms are collapsed into the source functions, P(T) 

and 4(T). 

The surface integral above is now evaluated by 
making use of boundary conditions (I b) and (3b), 

which after some manipulations yield : 

(SC) 

By following the formalism in the generalized inte- 
gral transform technique, the auxiliary eigenvalue 

problem is taken as 

Also, the initial condition (Ic) is transformed with 

J\ ~(x)$,(x)iN,I” d U, and the completely transformed 

problem is given by : 

V * K(x)Vr,Q,, x) + (~?n’(x) dT,(I) +pL,2TJ(t) =.&(T,(t)), ,; = 1.2,. (6a) 
-d(x))$(p,,x) = 0. XE V (3a) 

UI 

2$,(x) 
r<(O) =f;, i= 1,2,... 

~(x)$(~,, x) +B(x)K(x) X = 0, x E S (3b) where, 

whose solution is assumed to be known at this point, 
and allows the definition of the following integral .4,(F,) = N!‘;’ 

is 
P(x, T,(f))ll/,(x) dv 

/ x 
transform pair : 

T,(t) = 
s 

w(x) f@ 7-(x t) dz:, 
N,“2 - 

Transform (4a) 
+ 1 $(x, T,(r)) [Ux) IWJ;x):Y 

\ 

T(x, t) = i .‘,,i$;(x)C(r). 

and, 

Inversion. (4b) 
$7, / { = N],3 ~v(x).f’(x)$,(x) dv. 

Equation (la) is now operated on with s ” 
^ 

(6b) 

ds (6~) 

(6d) 

J” $,(x)/N,’ ’ dr, to yield : 

dT,(r) 
---r +/L’F;(t, =&(T) 

where, 

Equations (6) above form an infinite system of non- 
linear ordinary differential equations for the trans- 

(5a) formed potentials, i”,s. Once a solution is obtained, 
the inversion formula, equation (4b), can be recalled 
to provide the complete field. T(x. t). From an engin- 
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eering point of view it suffices to truncate the infinite 
system at the Nth row and column, solve this N x N 
system, and observe the convergence behavior as N is 
increased. From a more formal point of view, it is 
necessary to look for conditions on the right hand 
sides of equation (6a) ensuring that the solution tends 
to the solution of the infinite system as N + co, as 
indicated in ref. [5]. For computational purposes, the 
truncation order N is adaptively chosen along the 
numerical integration process, so as to satisfy the user 
prescribed accuracy target and keeping the com- 
putational effort to a minimum. The aspects related 
to the adaptive computational procedure are dis- 
cussed in the next section, including the automatic 
error control scheme. 

Applications are then considered to illustrate the 
computational procedure and demonstrate the con- 
vergence behavior for each class of nonlinear problem 
here analyzed. 

COMPUTATIONAL PROCEDURE 

The basic steps in applying the generalized integral 
transform technique are as follows. 

(A) Choose an appropriate auxiliary problem, 
which contains as much jnformation as possible about 
the original problem, with respect to the geometry 
and operators in the coordinates to be eliminated 
through integral transformation. The more infor- 
mation contained in the expansion basis functions, the 
less coupled the resulting ordinary differential system 
will be and the smaller the number of terms required 
in the system truncation. 

A number of eigenvalue problems are readily solved 
in explicit analytic form in terms of well-known tran- 
scendental functions, otherwise the integral transform 
approach itself can be used to provide a semi-anaIyti~ 
error controlled solution to the original auxiliary 
problem, as discussed in ref. [5]. 

(B) Develop the integral transform pair for the 
associated transformation and inversion operations, 
which is a straightforward task once the orthogonality 
property of the eigenfunctions has been obtained. For 
classical Sturm-Liouville problems these results are 
readily available, as well as for a number of more 
general situations f3]. 

(C) Integral transform the original partial differ- 
ential system, by making use of the appropriate oper- 
ator that recovers the transform formulae within the 
transformation process. The related integral operator 
will be responsible for eliminating all but one inde- 
pendent variable of the PDE system, but not every 
term will be fully transformable in the sense of 
ref. [3]. Therefore, an infinite system of nonlinear 
coupled ordinary differential equations will result, 
relating the infinitely many transformed potentials of 
the ~igenfunctions expansion. If a decoupled system 
was obtained, each transformed potential could be 

independently solved and an exact solution would be 
achievable. 

(D) Numerically solve the coupled ODE system, 
after truncation of the infinite system at the Nth row 
and column. The formal aspects behind this trunc- 
ation process, which warrant convergence to the in- 
finite system solution as N increases, were examined 
more closely in different sources 151. The numer~ca1 
procedures adopted are better discussed in this 
section, and involve the use of well-established ODE 
solvers available in scientific subroutines packages 
such as the IMSL library [29], with user prescribed 
accuracy. Note that for parabolic problems the ODE 
system becomes an initial value problem, while for 
elliptic systems a boundary value problem results. In 
the case of an eigenvalue problem, the integral trans- 
formation process produces an algebraic problem for 
the related matrix eigensystem analysis. 

Under certain circumstances. approximate solu- 
tions may be of interest in the realm of applications, 
readily obtainable by neglecting the nondiagonal 
elements in the coupled ODE system, yielding a de- 
coupled ‘lowest order solution’, or its once analyti- 
cally iterated companion, the ‘iterated lowest order 
solution’. 

(E) Recall the inversion formula to construct the 
original potentials, once the transformed potentials 
have been nume~cally evaluated in the previous step. 
Therefore, the final solution is analytic and explicit 
in all but one of the independent variables, and the 
summations of the inversion formula are computed 
only at those points of interest, or analytically 
manipulated as needed. Thus, the truly numerical task 
in this approach is reduced to the error controlled 
solution of an ODE system. 

A quite straightforward algorithm can be 
constructed, including the attractive feature of auto- 
matically controlling the global error in the final solu- 
tion at any selected points. To achieve this goal, the 
semi-analytic nature of this approach is used in con- 
junction with well-established subroutines libraries 
with intensively tested accuracy control schemes. The 
basic steps in computation are as follows. 

(A) The auxiliary eigenvalue problem is solved for 
the eigenvalues and related normalized eigen- 
functions, either in analytic form when applicable or 
through the generalized integral transform technique 
itself. 

(B) The transformed initial or boundary con- 
ditions are computed, either analytically or, in a gen- 
eral purpose procedure, through adaptive numerical 
integration, such as in subroutine DQDAGS from the 
IMSL package [29]. Similarly, those coefficients on 
the transformed ODE system which are not dependent 
on the transformed potentials can be evaluated a 
priori, and therefore saving some computational 
effort during the numerical integration of the ODE 
system. 

(C) The truncated ODE system is then numerically 
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solved through different tools, depending on the type 
of problem under consideration. For an initial value 
problem, the numerical integration is performed, for 
instance, through subroutine DIVPAG of the IMSL 

library in Gear’s method mode, since the resulting 
system is likely to become stiff, especially for increas- 

ing truncation orders. Boundary value problems can 

be handled through the subroutine DBVPFD, which 

is a more recent implementation of the well-known 
PASVA3 code, an adaptive unite-d~ffcrence program 
for first order nonlinear boundary value problems. 

Both subroutines offer an interesting combination of 
accuracy control, simplicity in use and reliability, with 

some compromise in speed and memory requirements 
when compared to dedicated schemes. In either case, 
a pre-estimate for the truncation order N can hc 

obtained, for instance, through the lowest order solu- 

tion. Since all the inte~ediate numerical tasks arc 
accomplished within user prescribed accuracy, one 

repeating computations for a reduced system s~/e. 
since a more precise solution is already available 
(except for the need of inspecting how accurate this 
solution might be). ‘Thcreforc. it is recommended that 

integration is started with an underestimated value 01 
N, and the truncation order can then be gradually 

increased in fixed steps, N+AN, until convcrgcncc is 
achieved in all desired locations. The lower order 

results already available then serve as excellent initial 
guesses for the iterative procedure implemented in the 

boundary value problem solver, providing a faster 
solution of the higher order ODE system. In both 
cases. the adaptive scheme automatically controls the 
relative error on the final converged solution, and 
offers in addition a costless error estimator at con- 

pletion of the integration. 

APPLICATIONS 

is left with the need of reaching convergence in the h~onii~e~r stiwce term ~~~~~~~s~~~n ~~ub~~~?z~ [9] 
eigenfunction expansions and automatically con- We consider the transient analysis ofa radiating fn 
trolling the truncation order N, for a certain number subjected to step changes in base or ambient tem- 
of fully converged digits requested in the final perture [9], with a nonlinear surface dissipation term, 
solution, at those positions of interest. written in dimensionless form as : 

The analytic nature of the inversion formulae c:T(x. f) i’T(x. t) 

allows for a direct testing procedure at each specified 
ct = ix-‘ 

-Nc(T4-IIj'). 

position within the medium where a solution is 
desired. and the truncation order N can be gradually 

inO<x<l, f>O fga) 

decreased (or eventually increased), to fit the user T(X,O) = r,,, 0 < x < 1 (gb) 

global error requirements over all the solution 
domain. The simple tolerance testing formula 

%(x, f) 
=O; T(l,t)=l, t>O. @cd) 

employed is written as : i.x 1 -- 0 

where N* is decreased from the value of 1%’ while R still 

tits the user requested global error, and then N is 
changed to assume the value of N*. The truncation 
order can also be increased and numerical integration 
repeated in case the estimated value of iV is not 
sufficiently large to provide the required number of 

fully converged digits. 
For parabolic systems, i.e. initial value problems, 

in which numerical integration follows a marching 
procedure along the t variable, this adaptive scheme 
ofcontroll~Ilg N automatically reduces the system size 
as integration proceeds in t. It is then recommended 
to start the marching procedure with a conservatively 
high value of N and allow the adaptive scheme to play 
the role of reducing and controlling N. 

Significant computational savings are achieved with 
respect to a plain numerical integration with a fixed 
size system. For elliptic systems (boundary value 
problems), in which numerical integration is per- 
formed at once for al1 the solution domain, through 
an iterative procedure. there is no relative gain in 

In order to present some representative results, 
three cases were taken from the related literature, 
and an analysis of convergence was performed for 

increasing values of the order N and at different times 
1. All the numerical results reported were obtained by 
making use of subroutine DIVPAG from the IMSL 
package, with a relative error requirement of IO ‘. 

The convergence rates can be observed by con- 
sidering different orders of truncation. N. for the 
dimensionless temperature profile. Table 1 shows the 
convergence of the temperature profile at t = 0.09 and 

Table 1. Radiating fin analysis : convergence of temperature 
protik! (I = 0.09) 

1 iv = 5 ;v= IO H= I5 ‘V = 20 or 30 

0.0 0.5145 0.5146 0.5 146 0.5146 
0.1 0.517K 0.5178 0.5178 0.5178 
0.2 0.5280 0.5279 0.5279 0.5279 
0.3 0.5459 0.5459 0.5459 0.5459 
0.4 0.5737 0.5739 0.5738 0.5738 
0.5 0.6134 0.61 33 0.6133 0.6133 
0.6 0.6661 0.6659 0.6659 0.6659 
0.7 0.7319 0.7319 0.7320 0.7320 
0.8 0.8107 0.81fO 0.8110 0.x1 10 
0.9 0.9OI6 0.901 f 0.9012 0.9012 
f .o 1 .oooo I .oooo 1 .oooo I .oooo 
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for the case (7’s = 0.5; IV, = 0.6; H = 0.0). Clearly, 
as the boundary is approached (x = 0.8 and 0.9), the 
convergence rate decreases, though only slightly, as 
expected from utilizing the inversion formula. Again, 
the overall performance is quite consistent, and an 
excellent agreement was found with the numerical 
results obtained through subroutine DMOLCH/ 
IMSL [29]. 

Nonlinear cotwection-diffusion (transientproblem) [19] 
The hybrid solution for problems with nonlinear 

convective terms is now illustrated through con- 
sideration of the one-dimensional nonlinear Burgers 
equation [ 191, which is a frequently employed model 
equation for transient convection--diffusion phenom- 
ena, and used for development and validation of 
numerical schemes. The mathematical formulation of 
the problem here considered is : 

aT(x, t) aT(x, t) dZ T(x, t) 
_l_- +u(T+- = v--------i_ 

dt ax- f 

O<x<l, t>o (94 

with initial and boundary conditions given, respec- 
tively, by 

7(x,0)=1, O<X<l (9b) 

T(0, t) = I ; T(l,t)=O, t>o (9c,d) 

and for the present application the nonlinear function 
u(T) is taken as 

u(T) = uO+bT. (94 

Numerical results were obtained for typical values 
of the parameters that govern the relative importance 
of convection (linear and nonlinear terms) and 
diffusion, Q, b, and v, Truncated systems of order 
N < 30 were solved through IMSL subroutine 
DIVPAG, with sufficient accuracy requirement in 
terms of relative error, in order to demonstrate the 
convergence characteristics of the hybrid solution. 
Table 2 presents the potential distributions, at differ- 
ent values of f = 0.1 and 0.5, for increasing values 
of N. The excellent convergence behavior is easily 
noticeable throughout Table 2, but it is interesting 
to note the behavior with respect to the governing 
parameters. As usual in eigenfunction expansion tech- 
niques, convergence becomes slower for decreasing t ; 
also, as the important of convection increases, either 
through the linear (uO) or nonlinear (b) contributions, 
larger systems are required to provide the same rela- 
tive accuracy. For instance, with b = 0.01 and 
u,) = 1.0, convergence to five digits is achieved with 
N 1 15, with b = 0.5 and u0 = 1.0, 1.5-20 terms are 
required, while for b = 5.0 and u0 = 1.0 convergence 
is reached for N zz 25. For validation purposes, a 
semi-discrete scheme based on the combined use of 
spatial collocation and the method of lines was 
employed, which is readily available in subroutine 
DMOLCH from the IMSL library [29], for one- 

Table 2. Nonlinear Burgers equation : convergence of hybrid 
solution and comparison with numerical solution 

N 5 10 15 20 30 Numerical? 

x t=O.I @Jo= l.O;b=O.OI;v= 1.0) 

0.1 0.98152 0.98108 0.98111 0.98113 0.98112 0.98111 
0.3 0.92128 0.92131 0.92132 0.92132 0.92132 0.92126 
0.5 0.79882 0.79863 0.79861 0.79861 0.79861 0.79853 
0.7 0.57169 0.57254 0.57250 057249 0.57250 0.57241 
0.9 0.22014 0.22054 0.22047 0.22043 0.22045 0.22041 

______-- 
x 2 = 0.5 (UO = 1.0; b = 0.01 ; Y = 1 .O) 

0.1 0.93980 0.93979 0.93979 0.93979 0.93979 0.93979 
0.3 0.79919 0.79919 0.79119 0.79919 0.79919 0.79919 
0.5 0.62622 0.62621 0.62621 0.62621 0.62621 0.62621 
0.7 0.4133s 0.41334 0.41334 0.41334 0.41334 0.41334 
0.9 0.15194 0.15194 0.15194 0.15194 0.15194 0.15194 

x I = 0.1 (Id* = 1.0; 6 = 0.5; Y = 1.0) 

0.1 0.98507 0.98458 0.98461 0.98463 0.98462 0.98461 
0.3 0.93240 0.93243 0.93244 0.93243 0.93243 0.93238 
0.5 0.81800 0.81774 0.81772 0.81772 0.81772 0.81764 
0.7 0.59425 059409 0.59404 0.59403 0.59403 0.59395 
0.9 0.23064 0.23110 0.23100 0.23097 0.23099 0.23095 

.___-._. 
x t = 0.5 (au = 1.0; b = 0.5; v = 1.0) 

0.1 0.95031 0.95034 0.95032 0.95032 0.95032 0.95032 
0.3 0.82591 0.82594 0.82594 0.82593 0.82593 0.82593 
0.5 0.66018 0.66014 0.66014 0.66014 0.66014 0.66014 
0.7 0.44271 0.44274 0.44273 0.44273 0.44273 0.44213 
0.9 0.16424 0.16431 0.16429 0.16428 0.16429 0.16429 

_____- 
x t=0.1(u0=1.0;b=5.0;v=1.0) 

0.1 1.0004 0.99846 0.99849 0.99852 0.99851 0.99851 
0.3 0.98887 0.98897 0.98900 0.98897 0.98897 0.98896 
0.5 0.94953 0.94774 0.94771 0.94770 0.94771 0.94769 
0.7 0.79457 0.79337 0.79330 0.79325 0.79328 0.79324 
0.9 0.35350 0.35452 0.35430 0.35420 0.35426 0.35423 

__~ -~__~. -.-_ 
x t=OS(u,= I.O;b=S.O;v= 1.0) 

0.1 0.99799 0.99653 0.99655 0.99658 0.99657 0.99657 
0.3 0.97866 0.97903 0.97904 0.97901 0.97901 0.97901 
0.5 0.92319 0.92232 0.92226 0.92226 0.92227 0.92226 
0.7 0.75150 0.75122 0.75111 0.75108 0.75110 0.75109 
0.9 0.32549 0.32671 0.32649 0.32641 0.32646 0.32645 

t Subroutine DMOLCH/IMSL [29] (31 grid points). 

dimensional parabolic problems. The results from this 
well-established routine are in excellent agreement 
with those here presented, for 31 grid points in the 
spatial discretization. 

Nonlinear equation coeficients (diffusion problem) [lo] 
We consider heat conduction in a finite slab with a 

temperature de~ndent thermal conductivity, given in 
dimensionless form as : 

CJT(x, t) 
7=;G[K(T)y], O<x<l, t>O 

(104 
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and initial and boundary conditions 

?“(.l-, 0) = I. 0 < .Y ,< 1 (lob) 

?T(O, t) 
~c?s- = 0; ~(1, t) = 0, t > 0 (I0c.d) 

and K(T) in the present application is taken as 

K(T) = 1 +hT. (104 

The application considered was solved for different 
values of parameter b in the thermal conductivity 

expression, equation (lOe), namely, h = 0.1, 1 .O and 

5.0, in order to illustrate the effect of an increasing 
nonlinearity on the convergence behavior of the pro- 
posed hybrid solution. Table 3 shows numerical 

results for the temperature distribution within the slab 
at different times, t = 0.1 and 0.5. The ODE system 

was solved for increasing truncation orders up to 
N = 30, allowing for an inspection of convergence 

characteristics. As expected, for this eigenfunction 
expansion technique, a larger number of terms is 

required for decreasing values of t. Also, as h 
increases, and especially for shorter times, fully con- 
verged results to five digits may require larger trunc- 
ation orders. For h = 5.0 and t = 0.1, the numerical 

results shown for N = 30 are converged to the fourth 
digit, while for t = 0.5 are correct for all five digits 
provided. Therefore, although some influence of the 
parameter h was observed. it can be said that the 
present approach is capable of handling strong non- 

linear influence with basically the same performance. 
It is clearly noticeable that three or even four digits of 
precision arc attainable at the lower values of N in all 
situations considered. with significant savings in cost 
with respect to higher orders. The last column illus- 
tratcs the excellent agreement with a well-established 

routine for one-dimensional parabolic problems avail- 
able in the IMSL package [29], which uses the semi- 

discrete method of lines combined to a collocation 
scheme with cubic hermite polynomials. 

In this section we illustrate the analysis of the 
boundary layer equations for simultaneous heat and 

fluid flow inside ducts. The momentum and energy 

equations are transformed concurrently, based on 
specific auxiliary eigenvalue problems. We consider 
hydrodynamically and thermally developing incom- 
prcssiblc laminar flow of a Newtonian fluid. between 
parallel-plates subjected to a uniform wall tem- 
pcrature and uniform inlet conditions, for both vel- 
ocity and temperature fields. Physical properties arc 
assumed constant and viscous dissipation and free 
convection effects arc considered negligible, although 
not a limitation for application of the present 
approach. Within the range of validity for the bound- 
ary layer hypothesis, the problem formulation in 
dimensionless form is written as : 

Table 3. Heat conduction wrth variable thcrmai cot,- 
ductivity : convergence behavior of hybrid solution and con- 

parison with numerical approach 

N 5 IO IS 20 30 Nuniencalt 

.\- 1= 0.1 (h = 0.1) 

0.1 0.93104 0.93105 0.93104 0.93104 0.93104 0.93097 
0.3 0.86765 0.86765 0.86763 0.86763 0.86763 0.X6754 
0.5 0.72686 0.72692 0.72690 0.72690 0.72690 0.72680 
0.7 0.49505 0.49499 0.49497 0.49497 0.49497 0.49488 
0.9 0.17826 0.17854 0.17850 0.17849 0.17850 0.17846 

.Y I = 0.5 (h = 0. I) 

0.1 0.35182 0.35182 0.35182 0.35182 0.35182 0.35178 
0.3 0.31809 0.31809 0.31809 0.31809 0.31809 0.31805 
0.5 0.25348 0.25349 0.25348 0.25348 0.25348 0.25346 
0.7 0.16366 0.16365 0.16365 0.16365 0.16365 0.16363 
0.9 0.05671 0.05674 0.05674 0.05673 0.05674 0.05673 

.\ I = 0.1 (h = 1.0) 

0.1 0.83759 0.83775 0.83764 0.X3763 0.83764 0.X3757 
0.3 0.78110 0.78105 0.78093 0.78092 0.78094 0.78086 
0.5 0.66185 0.66242 0.6622X 0.66225 0.6622X 0.66220 
0.7 0.47166 0.47102 0.47076 0.47079 0.47080 0.47073 
0.9 0.18441 0.18780 0.18745 0.18725 0.18736 0.1X731 

.x I = 0.5 (h = 1.0) 

0.1 0.26141 0.26143 0.26142 0.26142 0.26142 0.26140 
0.3 0.23896 0.23896 0.23895 0.23895 0.23895 0.23893 
0.5 0.19453 0.19457 0.19456 0.19456 0.19456 0.19455 
0.7 0.12964 0.12960 0.12959 0.12959 0.12959 0.12958 
0.9 0.04654 0.04673 0.04671 0.04670 0.04670 0.04670 

.Y I = 0.1 (h = 5.0) 

0.1 0.58117 0.58168 0.58133 0.58127 0.58135 0.5X140 
0.3 0.54812 0.54813 0.54771 0.54767 0.54775 0.54780 
0.5 0.47637 0.47791 0.47744 0.47731 0.47743 0.47746 
0.7 0.36362 0.36214 0.36123 0.36121 0.36140 0.36140 
0.9 0.16105 0.17199 0.17082 0.16981 0.17035 0.17024 

.x t = 0.5 (h = 5.0) 

0.1 0.12374 0.12377 0.12376 0.12376 0.12376 0.12377 
0.3 0.11431 0.11432 0.11431 0.11431 0.11431 0.11432 
0.5 0.09511 0.09518 0.09516 0.09516 0.09516 0.09517 
0.7 0.06583 0.06578 0.06576 0.06576 0.06576 0.06577 
0.9 0.02483 0.02513 0.02510 0.02508 0.02509 0.02509 

i-Subroutine DMOLCHilMSL LIBRARY [39] (31 grid 
points). 

Continuity : 

?U(R, Z) (? V(R, Z) 

(72 
+ --?T =o, O<R<l. Z>O 

Z-momentum equation : 

O<R<l, Z>O (lib) 
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Table 4. Boundary layer equations: convergence analysis of duct centerline velocity and validation of 
adaptive procedure (Tol. = IO-‘) 

387 

N 
x+ 

0.375 1.1101 1.1190 1.1221 1.1232 1.1239 1.1242 1.1242 30 1.124 
0.5 1.1271 1.1386 1.1413 1.1422 1.1427 1.1430 1.1430 30 1.144 
1.0 1.1904 1.1979 1.1994 1.1999 1.2001 1.2002 1.2002 29 1.203 
1.5 1.2380 1.2423 1.2432 1.2435 1.2435 1.2435 I .2435 28 1.246 
2.0 I .2764 1.2690 1.2197 1.2797 I .2796 1.2796 1.2796 28 1.282 
2.5 1.3092 1.3108 1.3110 1.3108 1.3107 1.3107 1.3107 28 1.312 
5.0 1.4148 1.4139 1.4133 1.4129 1.4126 1.4126 1.4126 26 1.411 

12.5 1.492 1 1.4917 1.4914 1.4913 1.4913 1.4913 1.4913 14 1.490 

5 10 15 20 25 30 Adapt. N Ref. [30] 

Energy equation : 

gj(R, z) + Vae(R, z) I a28 

az aR =PeaRZ’ 

O<R<l, Z>O (1 lc) 

with inlet and boundary conditions given, respec- 

tively, by 

U(R,O) = 1; V(R,O) = 0; B(R,O) = 1 (Ild-f) 

a U(0, Z) am, z) 
aR 

=o; V(O,Z)=O; aR ___ = 0 (Ilg-i) 

CI(l,Z) = 0; V(l,Z) = 0; O(l,Z) = 0. (llj-I) 

First of all, the adaptive procedure is validated, and 
the convergence behavior illustrated, for the velocity 
problem under separation of the fully developed solu- 
tions. Table 4 presents results for the duct centerline 
velocity along the dimensionless axial coordinate, for 
different values of the truncation order in the velocity 
field expansion, from N = 5 up to 30. Also shown are 

the final results achieved through implementation of 
the adaptive procedure, and the automatically con- 

trolled values of the system size N. Clearly, as 
expected, the adaptive scheme results reproduce the 
fully converged solutions to within the user prescribed 

accuracy requirements, in this case a relative error 
target of 10 ‘. The results from the purely numerical 
approach in ref. [30] are also validated, demonstrating 
a very good agreement with the error controlled 
results of the present approach. 

Figure 1 illustrates the automatic reduction on the 

ODES systems sizes, for both the velocity and tem- 
perature fields, achieved through implementation of 
the adaptive procedure along the integration path 
in Z. The temperature field is still more rapidly 
converging than the velocity expansion, even after 
separation of the fully developed flow solution. The 
computation represented in Fig. 1 was observed 
to be 23 times faster than the numerical integration of 
the ODE systems with a fixed number of equa- 
tions, i.e. N = M = 40, which reconfirms the marked 
advantages in the implementation of the adaptive 
procedure. 

Pr = 10.0 

00 
10 100 1000 loooo 

2 

FIG. 1. Automatic reduction of the truncated ODES systems 
sizes along integration path, through adaptive procedure (error 

target = IO-‘). 

Nonlinear comection-delusion (steady-state) [20] 
The integral transform approach is now employed 

in the analysis of the two-dimensional steady Burgers 

equation. This important test case represents a model 
equation for the competition of convection and 
diffusion phenomena in multidimensional steady situ- 

ations. The problem formulation was selected since 
an exact solution for the linearized version of this 
problem is readily obtainable, that can be useful for 

validation purposes. The partial differential system is 
then given by : 

(124 

with boundary conditions 

1 -exp [uO(x- l)] 
T(x,O) = -- 

I-exp[-uoJ ’ 

T(x,I)=O, Odx< 1 (12b,c) 

my) = 
1 -w My- 111 

1 -exp[-u,] ’ 

T(l,y)=O, O<y<l. W&e) 
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Table 5. Steady Burgers equation : convergence of potential 7(x-, J) at different positions (Y, ~1). for 
u = r = u0 (linear problem-To1 = 10m4) 

U,j = I.0 

.V = 0.1 Y = 0.5 * = 0.9 .r = 0.1 \- = 0.5 
;, = 0.5 

x = 0.9 i’= 0.1 1. = 0.5 \- = 0.9 
N J‘ = 0. I _I’ = 0. I x = 0.1 ,,’ = 0.5 ,k = 0.5 r = 0.9 -1. = 0.9 :I, = 0.9 

_ ~_ 
4 0.8803 0.5836 0.1398 0.5836 0.3869 0.0928 0.1412 0.0934 0.0244 
6 0.881 I 0.5846 0.1411 0.5842 0.3876 0.0936 0.1413 0.0938 0.0226 
8 0.8813 0.5842 0.1415 0.5844 0.3874 0.0938 0.1413 0.0937 0.0227 

10 0.8814 0.5844 0.1415 0.5844 0.3875 0.0938 0.1413 0.0937 0.0227 
I2 0.8814 0.5843 0.1415 0.5844 0.3874 0.0938 0.1413 0.0937 0.0227 

Anal. 0.8813 0.5844 0.1413 0.5844 0.3875 0.0937 0.1413 0.0937 0.0227 

Problem (12) was computationally solved for 

both the linearized (U = r = u,,) and nonlinear 
(U = c = u,T) versions, with the use of subroutine 
DBVPFD from the IMSL library to evaluate the 

transformed ODE system. A truncation order of 

N < 18 was employed throughout, with a relative 
error target of 10 -“, which was more than sufficient 

to provide convergence within the full range of par- 
ameters investigated. In order to illustrate the auto- 
matic accuracy control feature, we present in Table 5 
a comparison of the present results for the linearized 

problem with the exact solution, at different positions 
x, _r within the domain. The fully converged results, 

for the case of u0 = 1 presented, are in agreement to 
within k 1 in the last digit given, when compared to 

the exact solution, as expected from an automatic 
accuracy control scheme with a relative error target 
of 10 4. 

The convergence behavior of the eigenfunction 

expansions for the nonlinear problem is now illus- 

trated for different values of the parameter uO, which 
governs the relative importance of convection and 
diffusion effects. The parameter u0 was varied in the 

range of 0.1, 1 .O and IO. to cover the three possibilities 

of the convection-diffusion ratio. 
Tables 6-8 show, respectively, the convergence 

behavior for u,, = 0.1, 1.0 and 10, at different rep- 
resentative positions within the domain. It can be 
clearly observed that for increasing importance of 
the convection effect, the convergence rates decrease 

somehow, although not markedly enough to inhibit a 
fully converged solution within practical limits. For 
instance, at u0 = 0.1 even the results for N = 4 are 

within & 1 in the last digit of the converged solution ; 
at u0 = 1, some results are converged for N = 4 while 
others require N = 6 or 8; at tiO = 10, when con- 

vection becomes more important, convergence is 
achieved with N = 8 in the most favorable position 
and with N = 12 or 14 where the convective effects 

are more pronounced. The explanation for this 

behavior is immediate, since the convection terms play 
the role of a source term for the ‘diffusion’ problem 

solved through the eigenfunction expansion 
approach. Such expansions experience a reduction of 
convergence speed due to the presence of non- 

homogeneous terms in addition to the diffusion oper- 
ators. However. when the source term effect is 
sufficiently important to impede convergence within 
a reasonable limit, a few different alternatives have 
already been developed in order to enhance the con- 

vergence rates, such as the integral balance approach 
and filtering solutions presented in ref. [5], for both 
parabolic and elliptic diffusion problems. For the prcs- 

ent application, in the extreme situations of u,) >> IO, 
such an alternative enhanced series is recommended. 
In addition, auxiliary problems which include some 
information about the convection, even through lin- 
earized coefficients, may offer some advantages. 

Natural convection in a porous cavity [25] 
We consider two-dimensional, steady natural con- 

vection in a saturated porous rectangular enclosure. 
subjected to uniform internal heat generation and to 
cooling at both side walls, which are kept at the same 
uniform temperature. The top and bottom ends are 
kept insulated. Within the validity of Darcy’s law, 

Table 6. Steady Burgers equation : convergence of potential T(s, J’) at different positions (9. v), for 
u = I‘ = u,,T (nonlinear problem) 

u,, = 0.1 

.Y = 0.1 .I- = 0.5 .V = 0.9 y = 0.1 .\- = 0.5 s = 0.9 x = 0.1 ,- = 0.5 .x 0.9 = 
N y = 0.1 ?‘ = 0.1 J = 0.1 :V = 0.5 ?‘ = 0.5 J’ = 0.5 J’ = 0.9 ‘1. = 0.9 J‘ = 0.9 

_ ~_~~_~ .~~_~~~~~_ 
4 0.8172 0.4614 0.0934 0.4614 0.2573 0.0516 0.0935 0.05 17 0.0104 
6 0.8 173 0.46 I4 0.0935 0.4614 0.2573 0.0516 0.0935 0.0516 0.0103 
8 0.8 I73 0.4614 0.0935 0.4614 0.2573 0.0516 0.0935 0.0516 0.0103 

IO 0.8 173 0.4614 0.0935 0.4614 0.2573 0.05 16 0.0935 0.0516 0.0103 
12 0.8173 0.4614 0.0935 0.46 14 0.2573 0.0516 0.0935 0.0516 0.0103 
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Table 7. Steady Burgers equation : convergence of potential T(x, y) at different positions (x. J,-), for 
u = n = u0 T (nonlinear problem) 

U” = 1.0 

x = 0.1 x = 0.5 .y = 0.9 x = 0.1 x = 0.5 Y = 0.9 x = 0.1 x = 0.5 x = 0.9 
N )’ = 0.1 L’ = 0.1 y = 0.1 y = 0.5 I’ = 0.5 y=os v = 0.9 = 0.9 = 0.9 _ y y 

4 0.8762 0.5657 0.1280 0.5660 0.33 14 0.0687 0.1293 0.0690 0.0104 
6 0.8767 0.5661 0.1284 0.5660 0.3314 0.0687 0.1286 0.0685 0.0139 
8 0.8768 0.5660 0.1284 0.5660 0.3314 0.0687 0.1284 0.0687 0.0138 

IO 0.8768 0.5660 0.1285 0.5660 0.3314 0.0687 0.1284 0.0686 0.0138 
12 0.8768 0.5660 0.1285 0.5660 0.3314 0.0687 0.1284 0.0687 0.0138 

Table 8. Steady Burgers equation: convergence of potential r(.x, y) at different positions (x, J3. for 
u = t‘ = u,T (nonlinear problem) 

N 

4 0.9777 0.9762 0.5220 0.9780 
6 0.9946 0.9965 0.5467 0.9910 
8 0.9990 0.9918 0.5503 0.9926 

10 0.9998 0.9930 0.5502 0.9928 
12 0.9999 0.9927 0.5499 0.9928 
14 0.9999 0.9928 0.5498 0.9928 
16 0.9999 0.9928 0.5498 0.9928 

x = 0.1 
J = 0.1 

x = 0.5 
L’=O.l 

x = 0.9 
y = 0.1 

x = 0.1 
?’ = 0.5 

and after invoking the Boussinesq approximation, the 

problem formulation in dimensionless form is given 

by [25] : 

inO<x< 1, 

with boundary conditions 

$(O,Y) = $(l,L’) = 0; 

O<y<A (13b) 

T(O,y) = T(l,I’) = 0 

(13c-f) 

(1 kj) 

and the dimensionless Darcy velocities are obtained 
from the stream function distribution according to 
the definitions 

ati w 
u=---; 

aJ 
I_?= -I. 

0.r 
(14a,b) 

The present problem was solved for different values 
of the governing parameters, Rayleigh number and 
aspect ratio, namely, A = 2 and 5, R = 10, 50, 100, 
500, and 1000. 

First, the convergence behavior of this eigen- 
function expansion-type approach is illustrated in 
Tables 9 and 10, for stream function and temperature, 
respectively, with R = 100 and A = 5. To simplify the 

u. = 10.0 

r = 0.5 x = 0.9 x = 0.1 x = 0.5 x = 0.9 
I‘ = 0.5 I’ = 0.5 )’ = 0.9 y = 0.9 !’ = 0.9 

0.968 I 0.4504 0.5571 0.4608 0.1592 
0.9795 0.4602 0.5514 0.4595 0.1576 
0.9789 0.4611 0.5494 0.4617 0.1569 
0.9790 0.4611 0.5490 0.4609 0.1567 
0.9790 0.461 I 0.5492 0.4613 0.1567 
0.9790 0.4611 0.5496 0.461 I 0.1567 
0.9790 0.4611 0.5498 0.4612 0.1568 

tables, the truncation orders in the two expansions 

were kept equal, i.e. N = M, and varying from M = 5 
up to 22. The ODE solver was employed with a 

required tolerance of 10m4, which means that the fully 
converged results are expected to be correct to + 1 in 
the fourth significant digit. The Tables present results 
for $ and Tat various locations within the cavity, in 

order to cover all the regions of different physical and 
mathematical behavior. From inspection of Table 9 it 

can be noticed that the temperature results for N = 9 
are, in general, already fully converged to the four 
digits required, with a slightly slower convergence rate 

close to the wall at .Y = 0, within the boundary layer. 
From Table 10, the stream function results are 

shown to be essentially fully converged for N = 13, 

again with some slight improvement in convergence 
for the more internal points in the horizontal direc- 
tion. Similar conclusions concerning this well- 
behaved convergence were drawn for the other cases 

tested, with almost uniform rates within the medium. 
The fully converged integral transform results vali- 

date finite difference rest&s in all situations considered 
[31], both in the interior of the enclosure and in 
the vicinity of the top and bottom end walls, where 
the variables experience more significant variations. 

These results were obtained with N = M < 22, and a 
relative error target for the boundary value problem 
solver of 10e4. A typical run in the VAX 8810 com- 
puter took about 138 s of CPU time. 

Nauier-Stokes equations [26, 271 

The next natural step in the demonstration of the 
present hybrid approach is the solution of the 
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J’ N 0. I 0.2 0.3 0.4 0.5 

5 0.03210 0.05924 0.08182 0.09713 0.1028 
9 0.03200 0.05931 0.08179 0.09719 0.1028 

0.0 I3 0.03202 0.05932 0.08178 0.09718 0.1027 
17 0.03202 0.05932 0.08178 0.09718 0.1027 
22 0.03202 0.05932 0.08179 0.09719 0.1027 

5 0.03390 0.06136 0.08355 0.09820 0.1036 
9 0.03378 0.06145 0.08350 0.09828 0.1035 

0.1 I1 I I3 0.03379 0.06146 0.08350 0.09827 0.1035 
I7 0.03380 0.06145 0.08350 0.09827 0.1035 
22 0.03379 0.06145 0.08350 0.09827 0.1035 

5 0.04493 0.07953 0.1046 0.1 193 0.1244 
9 0.04479 0.07962 0.1045 0.1194 0.1244 

2.2222 13 0.04480 0.07963 0.1045 0.1194 0.1244 
I7 0.04481 0.07963 0.1045 0.1194 0.1244 
22 0.04480 0.07963 0.1045 0.1 194 0.1244 

5 0.06142 0.1025 0.1271 0.1397 0.1438 
9 0.06124 0.1026 0.1270 0.1398 0.1437 

4.8889 I3 0.06126 0.1026 0.1270 0.1397 0.1437 
I7 0.06126 0.1026 0.1270 0.1397 0.1437 
22 0.06126 0.1026 0.1270 0.1397 0.1437 

5 0.06583 0.1063 0.1299 0.1415 0.1454 
9 0.06553 0.1065 0.1297 0.1416 0.1453 

5.0000 I3 0.06556 0.1065 0.1297 0.1416 0.1453 
17 0.06556 0.1065 0.1297 0.1416 0.1453 
22 0.06556 0.1065 0.1297 0.1416 0.1453 

Table 9. Natural convection in porous enclosure: con- 
vergence of temperature distribution (N = M; To1 = IO-‘; 

R= 100:A =5) 

.\- 

Table IO. Natural convection in oorous enclosure: con- 
vergencc 

0.0 

1.1111 

2.2222 

3.3333 

4.4444 

of stream function ‘distribution (N = M; 
Tol=10~“;R=100;,4=5) 

.\- 

IV 0.1 0.2 0.3 0.4 0.5 

5 0.2790 0.3424 0.2969 0.1673 0.0 
9 0.2736 0.3446 0.2951 0.1678 0.0 

I3 0.2744 0.3451 0.2952 0.1681 0.0 
I7 0.2743 0.3451 0.2953 0.1679 0.0 
22 0.2743 0.3450 0.2953 0.1679 0.0 

5 0.5823 0.7634 0.6719 0.3814 0.0 
9 0.5752 0.7660 0.6693 0.3821 0.0 

I3 0.5763 0.7666 0.6694 0.3824 0.0 
I7 0.5762 0.7666 0.6696 0.3822 0.0 
22 0.5761 0.7666 0.6696 0.3822 0.0 

5 0.6030 0.7921 0.6981 0.3967 0.0 
9 0.5957 0.7948 0.6955 0.3974 0.0 

I3 0.5969 0.7954 0.6956 0.3976 0.0 
17 0.5967 0.7954 0.6957 0.3974 0.0 
22 0.5966 0.7954 0.6957 0.3975 0.0 

5 0.6060 0.7964 0.7019 0.3989 0.0 
9 0.5987 0.7991 0.6993 0.3996 0.0 

13 0.5999 0.7997 0.6994 0.3999 0.0 
I7 0.5997 0.7997 0.6996 0.3997 0.0 
22 0.5997 0.7996 0.6996 0.3997 0.0 

5 0.6177 0.8019 0.6995 0.3944 0.0 
9 0.6101 0.8048 0.6967 0.3953 0.0 

I3 0.61 13 0.8054 0.6968 0.3952 0.0 
I7 0.6111 0.8054 0.6970 0.3952 0.0 
32 0.61 I I 0.8053 0.6970 0.3952 0.0 

full NavierStokes equations, Therefore, the prcscnt 
application is aimed at advancing the integral trans- 
form method to handle this class of problems. here 
represented by the classical square cavity test case. 

The stream function-only formulation is preferred, 
since boundary conditions arc explicitly provided and 

the auxiliary eigenvalue-type problem is more easily 
defined. The related nonlinear biharmonic partial 
differential equation is integral transformed by clin- 

inating one of the space variables depcndencc. and 
obtaining an infinite system ofcoupled nonlinear ordi- 
nary differential equations for the transformed stream 

functions. 
We consider two-dimensional steady incom- 

pressiblc laminar flow of a Newtonian fluid inside a 
square cavity. due to a top end wall continuously 

moving at a constant velocity. The related Navicr 
Stokes equations in vorticity-transport formulation 

and dimensionless form are written as : 

?211,(.Y._i’) 
(O(.Y,J’) = - 

L . 
+ 

i21k(.Y, 1‘) 
~~~~ (‘,a’ -1 (7.u’ . 

inO<.v< I, O<r<l (t5b) 

where o(.Y, _r) is the vorticity, $(x, J,) is the stream 
function and Re is the Reynolds number. The appro- 

priate boundary conditions are given by 

i$(O, J) 
tb(O,r) = 0; i;.\- = 0. 0 <.r < I (15c.d) 

~~(i._r) 
$(I,$ =o: m-j;. = 0, 0 <_I’< I (I5c.l‘) 

$(,y,O) = 0: ““$” 1 0. o < .Y < I (1Sg.h) 

$(_& I) = 0; “9;;; 1) = -I. 0 <: I < I. (ISij) 

All the required boundary conditions are specified in 
terms of the stream function. Therefore, it becomes more 

convenient, especially when choosing the auxiliary eigen- 
value-type problem, to rewrite equations (15a,b) in the 
so-called stream function-only formulation. Then, sub- 
stituting equation (l5b) into equation (15a). we find : 

(16) 

Equation (16) above together with boundary con- 
ditions (15cej) form a nonlinear biharmonic-type prob- 
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lem, for which an exact solution is not attainable through 
the classical analytical solution methodologies. 

The algorithm constructed is first of all employed to 
produce a set of benchmark results for the important 
special case of creeping flow (Re = 0) which is also used 
to validate the automatic global error control. A relative 
error target of 10s4 is adopted, and convergence is con- 
sidered to be reached to within $: 1 in the fourth digit 
of the stream function. Table 11 below illustrates the 
convergence behavior of the stream function eigen- 
function expansion for different positions within the 
cavity and increasing truncation orders N. The fully 
comerged results are in excellent agreement with the 
exact solution, as expected from the global error control 
procedure. The recently reported results in ref. [32] are 
also considered for comparison purposes, which includes 
a semi-analytic solution and a finite elements implemen- 

0.12 

0.10 

E 
2 0.08 

5 
4 

fj 0’06 
2 0.04 

0.02 

0.00 
0 

tation of the case Re = 0, both in excellent agreement. 
Next, the convergence behavior of the present solu- 

(a) 

tions with prescribed accuracy was investigated, by vary- 
0.12 

ing the number of terms retained in the eigenfunction Re=400 X=0 

expansions, N. Different values of Reynolds number 0.10 

were considered, which appear more frequently in the F: 
literature, for critical comparisons, namely, Re = 0, 100, o 
400 and 1000, with truncation orders N d 21. Fully 

% 0.08 
g 

converged results are, therefore, expected to be correct 2 
to within + I in the fourth significant digit, for a relative 
error target of 10 -4. Ei 0’06 

Figures 2(a),(b) show the stream function profiles at 
the centerline of the cavity, x = 0.5, for the values of 

$ o.04 
@ 

Re = 100 and 400, respectively, and different truncation 
orders, N = 69, 12, 15, 18 and 2 I. Both graphs indicate 
that the curves are practically coincident for N = 12, 
15. 18 and 21, with decreasing convergence rates for 
increasing Reynolds number, as expected, since the 

Table 11. Convergence behavior of stream function expan- (bf 

sion (Re = 0) FIG. 2. (a) Convergence behavior of stream function 
___--.. ~_____ ~. - 

Y = 0.1 x = 0.1 
(x = 0.5, RE = 100). (b) Convergence behavior of stream 

x = 0.1 
N y = 0.1 J’ = 0.5 1‘ = 0.9 

function (x = 0.5, Re = 400). 

~---...__ 

3 2.293E-4 7..587E-3 2.698E-2 
4 2.1418-4 7.5128-3 2.991E-2 
5 2.092E-4 7.4858-3 3.089E-2 
6 2.0828-4 1.4766-3 3.101E-2 
7 2.0848-4 7.412E-3 3.087E-2 
8 2.088E-4 7.471E-3 3.073E-2 
9 2.09lE-4 7.47OE-3 3.0648-2 

10 2.092E-4 7.469E-3 3.0598-2 
11 2.092E-4 7.469E-3 3.056E-2 

N 
x = 0.5 
?‘= 0.1 

- 

3 3.081E-3 5.929E-2 7.424E-2 
4 3.081E-3 5.9138-2 7.151E-2 
5 3.071E-3 5.904E-2 7.2668-2 
6 3.071E-3 5.9008-Z 7.2128-2 
7 3.0698-3 5.898E-2 1.235L2 
8 3.069E-3 5.896E-2 7.223E-2 
9 3.069E-3 5.8968-2 7.2298-2 

10 3.069E-3 5.896E-2 7.226E-2 
11 3.069E-3 5.895E-2 7.2278-2 

x = 0.5 
y = 0.5 

biharmonic equation becomes more non-homo- 
geneous Aiso shown are some rest&s from previously 
reported purely numerical approaches, for comparison 
purposes. Clearly, the early finite differences results of 
Burggraf [33] become increasingly inaccurate for higher 
Re, and even more recent contributions on finite 
elements with quadratic elements 1341 are still reasonably 
inaccurate for moderate Reynolds numbers. The best 
agreement is achieved by efficient finite differences 
schemes, represented by the recent works of Ghia rt at. 
[35] and Schreiber and Keller [36], as shown in the 
extensive comparisons in refs. [5, 271. 

The same direct expansions here evaluated can be 
employed for higher Reynolds numbers, provided 
sufficiently large truncation orders are considered, and 
the price is paid in terms of increased storage and 
CPU time. Alternatively, one can extract information 
from the ‘source function’ represented by the con- 
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vection terms, making the nonhomogeneous part of 
the biharmonic-type equation less significant. This is 
accomplished by separating from the original poten- 
tial a particular solution that inctudes the source 
terms, as proposed in ref. [5]. In addition, a different 

auxiliary problem may bc considered, which accom- 
modates some information on the increased import- 

ance of the convection terms as /?e increases, for 
instance, through incorporation of linearized con- 

vective terms in the eigenvalue problem. 

CLOSING REMARKS 

The major advantages of the presented integral 
transform method are as follows. 

(A) The hybrid numerical-analytical nature, 

characteristic of this approach, collapses most of the 
numerical effort into one single independent variable, 
i.c. the numerical integration of an ODE system. 
which is nowadays a very ~~eII-established task in 
numerical analysis, even for potentially stiff systems. 

including error controi schemes. 

(B) The wide availability of ODE solvers and other 
subroutines in scientific sub-routines packages. for 

intermediate computational tasks, makes the com- 
putational impIeI~entation of the present approach 
quite simple, based on successive calls to such easily 
accessible and simple to USC routines. 

(C) The automatic global error control and esti- 

mation offers the extremely attractive feature of work- 
ing within an user prescribed accuracy and with an 
almost optiInized col~putational effort, not frequently 
found in numerical methods for partial di~erential 

equations. 
(D) Irregularly shaped domains, with respect to 

the coordinates system adopted, are directly handled 
tither through description of the boundary surfaces 

in each coordinate in terms of the other spatial vari- 
ablcs, or when required, by decomposing the domain 

in regularly shaped regions and analytically coupling 
these solutions for each subdomain. 

(E) Due to the hybrid nature discussed above, the 
increase in computational effort is not too significant 
when the number of independent variables in the PDE 
system is increased. Therefore, one-, two- and three- 

dimensional applications are handled within the same 

order of magnitude ofcomputcr CPU time. Numeri- 
cal experiments on the transient Burgers equation of 
tho previous section confirmed this statement. with an 
increase of about 10% in CPU time for the two- 
dimensional case. and similarly for the thrce-dimen- 
sional situation. This is easily understood if one 
remembers that the numerical work in this approach 
is always reduced to a numerical integration of an 
ODE system (one single independent variable), while 
all the remaining independent variables are eliminated 
through integral transformation and recalled in ana- 
lytic explicit form within the inversion formula, which 
is essentially a single, double or triple summation. 

This is indeed a major advantage over fully dtscretc 
approaches, which become in many casts prt~hibitivc 
for multidimensional situations. 

Future research needs are various and seem endless 

as more and more progress is achieved in this dircc- 
tion. The final objective will always bc the cstab- 

lishment of automatic PDE solvers for general pur- 

poses. with mininlum user intervention and expcrtisc. 
Meanwhile, different classes of extensions to those 

base problems here presented are to be handled. 
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